skip to main content


Search for: All records

Creators/Authors contains: "Lee, G. W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. N/A (Ed.)
    For more than a century, Classical Nucleation Theory (CNT) has been used to explain the process of crystallization in supersaturated solutions. According to CNT, nucleation is a single-step process that occurs via monomer-by-monomer addition. However, recent findings from experiments and numerical simulations have shown that nucleation is a multi-step process that occurs via more complex pathways that involve intermediate species such as ion complexes, dense liquid precursors, or even nanocrystals. Such non-classical pathways observed in protein solutions, colloidal suspensions and electrolytes are reviewed in this paper. The formation of stable Pre-nucleation Clusters (PNCs) in the crystallization of biominerals is also discussed. In spite of the mounting evidence for non-classical nucleation behaviors, the knowledge about the structural evolution of the intermediate phases and their role in polymorph selection is still limited. It has also been observed that gravitational force interferes with the crystallization behavior of materials thereby posing limitation to ground-based experiments. Microgravity conditions, coupled with containerless processing techniques provide a suitable alternative to overcome these limitations. 
    more » « less